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Graphs and classes groups

A. Ballester-Bolinches

If X is a class of groups, Delizia, Moravec and Nicotera (Bull. Austral. Math.
Soc. 75, 313-320, 2007) call a group G X-transitive if whenever 〈a, b〉 and 〈b, c〉 are in
X 〈a, c〉 is also in X (a, b, c ∈ G). The structure of XT-groups has been investigated
for a number of classes of groups, by Delizia, Moravec and Nicotera and others. A
graph can be associated with a group in many ways. Delizia, Moravec and Nicotera
introduce a graph which is a generalisation of the commuting graph of a group, but
do not make use of the graph. In the first part of the talk, we will use the properties
of the graph to investigate further classes of groups and to obtain more detailed
structural information. In the second part of the talk a graph characterisation of the
finite groups in which permutability is transitive is presented.

Regular groups, radical rings, and Abelian Hopf Galois structures
on prime-power Galois field extensions

A. Caranti

To be communicated.

Discrete dynamical systems in group theory

D. Dikranjan

A discrete dynamical system in a category X is an object X of X provided with
an endomorphism T : X → X in X. In most of the cases X will be the category of
(topological) groups and (continuous) group homomorphisms, the category of right
modules over a ring R and the R-module homomorphisms, or just the category of
topological (resp., measure) spaces and continuous (resp., measure preserving) maps.
An isomorphism between two such systems T : X → X and S : Y → Y is an
isomorphism ξ : X → Y in X such that ξ−1 ◦ S ◦ ξ = T .
A fundamental numerical invariant used to classify the discrete dynamical systems
up to isomorphism is the entropy. It was introduced in ergodic theory by Kolmogorov



and Sinai in 1958, and in topological dynamics by Adler, Konheim, and McAndrew
[1]. These authors proposed also a brief general scheme for defining algebraic entropy
in the context of abelian groups, developed further in [20, 5]. Since this approach was
appropriate only for torsion groups, a modification was proposed by Peters [14] in the
case of non-torsion abelian groups. A second modification was proposed in [2], since
Peters’ approach works only for monomorphisms. This notion of algebraic entropy h
of arbitrary endomorphisms of abelian groups will be one of the main topics of these
three lectures. Adjoint (dual) entropy in abelian groups was introduced in [4],[12].
The algebraic entropy was extended to the context of modules by Salce and Zanardo
[16]. In all these cases the entropy is intended to measure the “chaos” or “disorder”
created by the discrete dynamical system. Recently Salce, Vamos and Virili [15]
found a fruitful connection between the algebraic entropy of module endomorphisms
and multiplicities of length functions defined by Vámos in the sixties [17, 18].
The aim of the first lecture is to expose the unifying approach from [6] that will
allow us to obtain all notions of entropy mentioned above by using a single one hS,
defined for endomorphisms in a sufficiently simple category, namely the category
S of normed commutative semigroups. Once the entropy hS is defined, one can
easily build a natural functor F from each of the above mentioned categories X
(assigning an appropriate normed semigroup FX to every object X of X), so that
the specific entropy of a self-map T in X can be obtained as the entropy hS(FT ) in S.
This approach simultaneously covers the existing notions of entropy in the various
categories [1, 2, 4, 5, 12, 10, 14, 15, 16, 20] and allows for a transparent uniform
treatment of all these notions of entropy.
The second lecture is entirely dedicated to the algebraic entropy h in the category
of abelian groups. The right Bernouli shift βp of the group

⊕
N Zp has algebraic

entropy h(βp) = log p. It turned out that the computation of the algebraic en-
tropy of an endomorpfism φ of the group Qn (n ≥ 1) is rather non-trivial. Let
f(x) = sxn + a1x

n−1 + . . . + an be the characteristic polynomial of φ written as
a primitive polynomial over Z. Then h(φ) coincides with the (logarithmic) Mahler
measure m(f) = log s+

∑
|λi|>1 log |λi| of f(x), where λi are the eigenvalues of f(x)

[7]. This fact, recently established by Giordano Bruno and Virili [11], know as Alge-
braic Yuzvinskĭı formula, plays a crucial role in understanding the algebraic entropy.
It truns out, that this formula, along with the equalities h(βp) = log p for each prime
p, and other three natural properties of h (namely, invariance of h under conjugation,
the “Addition Theorem” for h and the “continuity” of h with respect to direct limits)
determine uniquely the algebraic entropy. It is worth mentioning that the Algebraic
Yuzvinskĭı formula provides a remarkable connection between the algebraic entropy
and the celebrated eighty years old Lehmer’s problem on prime numbers ([13]). As
another application of the Algebraic Yuzvinskĭı formula we deduce an extension of
Peters’ theorem about the connection between the algebraic entropy of an endomor-
phism φ : G→ G and the topological entropy of its Pontryagin dual φ̂ : Ĝ→ Ĝ.
The last lecture concerns the connection between the algebraic entropy and other



dynamical aspects of the endomorphisms of the abelian groups, for example peri-
odic and quasi-periodic points, the dychotomy between polynomial and exponential
growth of the orbits, etc. A relevant tool here is the Pinsker subgroup of a discrete
dynamical system φ : G → G, namely the largest φ-invariant subgroup P(G,φ) of
G where the restriction of φ has entropy 0. It turns out that P(G,φ) is also the
largest φ-invariant subgroup of G where the restriction of φ has polynomial growth,
as well as the smallest φ-invariant subgroup of G such that the induced endomophism
φ̄ : G/P(G,φ)→ G/P(G,φ) has no quasi-periodic points.
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Dynkin Diagrams, Support Spaces and Representation Type

R. Farnsteiner

The category of finite-dimensional associative algebras over an algebraically closed
field can be subdivided via the notion of representation type. Algebras of finite rep-
resentation type only possess finitely many isomorphism classes of finite-dimensional
indecomposable modules. For representation-infinite algebras, one distinguishes be-
tween tame and wild type. While the isomorphism classes of indecomposable modules
over tame algebras occur in each dimension in at most finitely many one-parameter
families (and thus can usually be classified), the presence of a two-parameter family
renders such a classification a wild problem.
In these lectures, I will explain how a combination of techniques from the repre-
sentation theory of quivers and geometric methods involving cohomological support
varieties leads to an understanding of the aforementioned subdivision for cocommu-
tative Hopf algebras. In this context, Dynkin diagrams appear via a connection
between Ext-quivers of associative algebras and McKay quivers of finite groups.



Generalisations of Finite T -groups

A. D. Feldman

This talk will discuss work with Adolfo Ballester-Bolinches, James Beidleman,
M.C. Pedraza-Aguilera, and M. F. Ragland. Let f be a subgroup embedding function
such that for every finite group G, f(G) contains the set of normal subgroups of G
and is contained in the set of Sylow-permutable subgroups of G. We say H f G if
H is an element of f(G). Given such an f , let fT denote the class of finite groups
in which H f G if and only if H is subnormal in G; because Sylow-permutable
subgroups are subnormal, this is the class in which f is a transitive relation. Thus if
f(G) is, respectively, the set of normal subgroups, permutable subgroups, or Sylow-
permutable subgroups of G, then fT is, respectively, the class of T -groups, PT -
groups, or PST -groups. Let F be a formation of finite groups containing all nilpotent
groups such that any normal subgroup of any fT -group in F and any subgroup of
any soluble fT -group in F belongs to F . A subgroup M of a finite group G is said
to be F-normal in G if G/CoreG(M) belongs to F . A subgroup U of a finite group
G is called a K-F-subnormal subgroup of G if either U = G or there exist subgroups
U = U0 ≤ U1 ≤ · · · ≤ Un = G such that Ui−1 is either normal or F-normal in Ui,
for i = 1, 2, . . . , n. We call a finite group G an fTF -group if every K-F-subnormal
subgroup of G is in f(G). When F is the class of all finite nilpotent groups, the
fTF -groups are precisely the fT -groups. We analyse the structure of fTF -groups,
particularly where the fT -groups are the T -, PT -, and PST -groups.

Some trends in the theory of groups with restricted conjugacy
classes

F. de Giovanni

To be communicated.



Rational representations and units of integral group rings of finite
groups

E. Jespers

The integral group ring ZG of a finite group is a ring of fundamental interest that
gives an obvious link between group and ring theory. In this context, its group of
invertible elements U(ZG) is an object of crucial importance. Even after the discovery
of a counter example to the integral isomorphism problem, by Hertweck, one needs to
continue the study of interesting special cases and to refine our understanding of the
structure of the unit group U(ZG). In this series of three lectures we focus on one of
the problems posed by S.K. Sehgal: give a presentation by generators and relations
for U(ZG) for some finite groups.
The aim of the lectures is three fold: (1) present the needed back ground in order to
tackle this problem, (2) survey some known results, (3) present new results.
The outline of the lecture is as follows.

1. Introduction and Motivation

2. Orders

3. Finite Unit Groups

4. Commutative Orders and Central Units

5. Non-commutative group rings and large unit groups

6. Rational representations of nilpotent groups

7. Applications to unit groups

8. Exceptional Simple Components

9. Structure theorems

Lecture 1 will deal with topics 1-4: hence dealing with the central part of the unit
group. Lecture 2 with topics 5-7: a reduction of the study of U(ZG) to central units
and special linear groups and construction of generators provided some representa-
tions do not occur. Lecture 3 covers topics 8-9: a description of the exceptional
representations and a structure theorem in case of the exceptional representations.



Representation growth and zeta functions of groups

B. Klopsch

In my talk I will give a short introduction to the subject of representation growth
and zeta functions of groups. Subsequently I will report on recent results in this area,
in particular from a series of joint papers with Avni, Onn and Voll on representation
zeta functions of arithmetic groups. A group G is said to be (representation) rigid, if
for every positive integer n the number rn(G) of complex linear representations of G of
dimension n is finite. Of particular interest are groups G for which the total number of
representations up to degree N , viz. RN (G) =

∑N
n=1 rn(G), is bounded by a polyno-

mial in N . For such groups G the arithmetic sequence rn(G) is encoded in a Dirichlet
generating function, the representation zeta function ζG(s) =

∑∞
n=1 rn(G)n−s where

s is a complex variable. A key invariant of the Dirichlet series ζG(s) is its abscissa of
convergence α(G): it provides the precise polynomial degree of growth in the total
number of representations RN (G) as N →∞. A central conjecture in the area, put
forward by Larsen and Lubotzky, predicts that any two arithmetic lattices Γ1 and Γ2

in a higher rank semisimple group H have the same degree of representation growth:
α(Γ1) = α(Γ2). This can be regarded as a quantitative refinement of the well known
Congruence Subgroup Conjecture of Serre.

Automorphisms of group extensions

D. J. S. Robinson

To be communicated.

∗-Group identities in Units of group algebras S. Sehgal

Analogous to Amitsur’s ∗-identities in rings we introduce the concept of ∗-group
identities in U(FG). We classify torsion groups so that the unit group of their group
algebras satisfy a ∗-group identity . The history and motivation will be given for
such an investigation.



Products of groups and Yang-Baxter equations

Y. Sysak

To be communicated.

Commutator width in Chevalley groups

N. Vavilov

The talk we present some recent result by Alexei Stepanov, and the author on
commutators and commutator width in Chevalley groups over rings. Morally, they go
in the direction opposite to Ore’s conjecture, and amount to saying that a Chevalley
group over a general ring has very few commutators. This is culminated by the result
asserting that the width of commutators in elementary generators is bounded by a
universal constant, depending on type of the group alone.
Also, we discuss the underlying methods (mostly, versions of localisation methods,
including some new ones), some further related results on commutators, and on
bounded generation and factorisations of Chevalley groups. In fact, many of our
results are already new for the special linear group SL(n,R) and even for finite fields
give better bounds, than the known ones.


